Statistical methods for microarray data

نویسنده

  • Lorenz Wernisch
چکیده

Microarray analysis is particularly interesting from a statistical point of view since already a wide range of methods has been applied in the interpretation of the data and there is doubtless more to come. The purpose of this introduction is to collect analysis methods proposed in several papers, provide the details that are often missing, use a uniform notation, indicate in which direction results might be generalized or applied, and thus make the material more accessible to the non-statistician. Essentially this is a cleaned version of the notes I made when reading these papers. As a short glance at this review shows though, the reader is expected to be fairly familiar with mathematical concepts such differentiation and integration, manipulation of equations, some vector and matrix algebra, concepts from probability theory such as Bayes theorem or the mathematical properties of the Normal probability density function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

The False Discovery Rate in Simultaneous Fisher and Adjusted Permutation Hypothesis Testing on Microarray Data

Background and Objectives: In recent years, new technologies have led to produce a large amount of data and in the field of biology, microarray technology has also dramatically developed. Meanwhile, the Fisher test is used to compare the control group with two or more experimental groups and also to detect the differentially expressed genes. In this study, the false discovery rate was investiga...

متن کامل

Integration and Reduction of Microarray Gene Expressions Using an Information Theory Approach

The DNA microarray is an important technique that allows researchers to analyze many gene expression data in parallel. Although the data can be more significant if they come out of separate experiments, one of the most challenging phases in the microarray context is the integration of separate expression level datasets that have gathered through different techniques. In this paper, we prese...

متن کامل

Statistical methods for microarray assays.

The paper shortly reviews statistical methods used in the area of DNA microarray studies. All stages of the experiment are taken into account: planning, data collection, data preprocessing, analysis and validation. Among the methods of data analysis, the algorithms for estimating differential expression, multivariate approaches, clustering methods, as well as classification and discrimination a...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001